A Docker brand motorized tricycle, looks fragile and overladen

in Code snippets, Lessons learned

An Efficient Multi-Stage Build for Python Django in Docker

We’ve recently begun dockerizing our applications in an effort to make development and deployment easier. One of the challenges was establishing a good baseline Dockerfile which can maximize the benefits of Dockers caching mechanism and at the same time provide minimal application images without any superfluous contents.

The basic installation flow for any Django project (let’s call it foo) is simple enough:

export DJANGO_SETTINGS_MODULE=foo.settings
pip install -r requirements.txt
python manage.py collectstatic
python manage.py compilemessages
python manage.py migrate

(Note: In this blog post we’ll mostly ignore the commands to actually get the Django project running within a web server. We’ll end up using gunicorn with WSGI, but won’t comment further on it.)

This sequence isn’t suitable for a Dockerfile as-is, because the final command in the sequence creates the database within the container image. Except for very specific circumstances this is likely not desired. In a normal deployment the database is located either on a persistent volume mounted from outside, or in another container completely.

First lesson: The Django migrate command needs to be part of the container start script, as opposed to the container build script. It’s harmless/idempotent if the database is already fully migrated, but necessary on the first container start, and on every subsequent update that includes database migrations.

Baseline Dockerfile

A naive Dockerfile and accompanying start script would look like this:

# Dockerfile
FROM python:slim
ENV DJANGO_SETTINGS_MODULE foo.settings
RUN mkdir -p /app
WORKDIR /app
COPY . .
RUN pip install -r requirements.txt gunicorn
RUN python manage.py collectstatic
RUN python manage.py compilemessages
ENTRYPOINT ["/app/docker-entrypoint.sh"]
# docker-entrypoint.sh
cd /app
python manage.py migrate
exec gunicorn --bind '[::]:80' --worker-tmp-dir /dev/shm --workers "${GUNICORN_WORKERS:-3}" foo.wsgi:application

(The --worker-tmp-dir bit is a workaround for the way Docker mounts /tmp. See Configuring Gunicorn for Docker.)

This approach does work, but has two drawbacks:

  • Large image size. The entire source checkout of our application will be in the final docker image. Also, depending on the package requirements we may need to apt-get install a compiler or development package before executing pip install. These will then also be in the final image (and on our production machine).
  • Long re-build time. Any change to the source directory will invalidate the Docker cache starting with line 6 in the Dockerfile. The pip install will be executed fully from scratch every time.

(Note: We’re using the slim Python docker image. The alpine image would be even smaller, but its use of the musl C library breaks some Python modules. Depending on your dependencies you might be able to swap in python:alpine instead of python:slim.)

Improved Caching

Docker caches all individual build steps, and can use the cache when the same step is applied to the same current state. In our naive Dockerfile all the expensive commands are dependent on the full state of the source checkout, so the cache cannot be used after even the tiniest code change.

The common solution looks like this:

# Dockerfile
FROM python:slim
ENV DJANGO_SETTINGS_MODULE foo.settings
RUN mkdir -p /app
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt gunicorn
COPY . .
RUN python manage.py collectstatic
RUN python manage.py compilemessages
ENTRYPOINT ["/app/docker-entrypoint.sh"]

In this version the pip install command on line 7 can be cached until the requirements.txt or the base image change. Re-build time is drastically reduced, but the image size is unaffected.

Building with setup.py

If we package up our Django project as a proper Python package with a setup.py, we can use pip to install it directly (and could also publish it to PyPI).

If the setup.py lists all project dependencies (including Django) in install_requires, then we’re able to execute (for example in a virtual environment):

pip install .

This will pre-compile and install all our dependencies, and then pre-compile and instal all our code, and install everything into the Python path. The main difference to the previous versions is that our own code is pre-compiled too, instead of just executed from the source checkout. There is little immediate effect from this: The interpreter startup might be slightly faster, because it doesn’t need to compile our code every time. In a web-app environment this is likely not noticeable.

But because our dependencies and our own code are now properly installed in the same place, we can drop our source code from the final container.

(We’ve also likely introduced a problem with non-code files, such as templates and graphics assets, in our project. They will by default not be installed by setup.py. We’ll take care of this later.)

Due to the way Docker works, all changed files of every build step cumulatively determine the final container size. If we install 150MB of build dependencies, 2MB of source code and docs, generate 1MB of pre-compiled code, then delete the build dependencies and source code, our image has grown by 153MB.

This accumulation is per step: Files that aren’t present after a step don’t count towards the total space usage. A common workaround is to stuff the entire build into one step. This approach completely negates any caching: Any change in the source files (which are necessarily part of the step) also requires a complete redo of all dependencies.

Enter multi-stage build: At any point in the Dockerfile we’re allowed to use a new FROM step to create a whole new image within the same file. Later steps can refer to previous images, but only the last image of the file will be considered the output of the image build process.

How do we get the compiled Python code from one image to the next? The Docker COPY command has an optional --from= argument to specify an image as source. 

Which files do we copy over? By default, pip installs everything into /usr/local, so we could copy that. An even better approach is to use pip install --prefix=... to install into an isolated non-standard location. This allows us to grab all the files related to our project and no others.

# Dockerfile
FROM python:slim as common-base

ENV DJANGO_SETTINGS_MODULE foo.settings

# Intermediate image, all compilation takes place here
FROM common-base as builder

RUN pip install -U pip setuptools

RUN mkdir -p /app
WORKDIR /app

RUN apt-get update && apt-get install -y build-essential python3-dev
RUN mkdir -p /install

COPY . .

RUN sh -c 'pip install --no-warn-script-location --prefix=/install .'
RUN cp -r /install/* /usr/local
RUN sh -c 'python manage.py collectstatic --no-input'

# Final image, just copy over pre-compiled files
FROM common-base

RUN mkdir -p /app
COPY docker-entrypoint.sh /app/
COPY --from=builder /install /usr/local
COPY --from=builder /app/static.dist /app/static.dist

ENTRYPOINT ["/app/docker-entrypoint.sh"]

This will drastically reduce our final image size since neither the build-essential packages, nor any of the source dependencies are part of it. However, we’re back to our cache-invalidation problem: Any code change invalidates all caches starting at line 17, requiring Docker to redo the full Python dependency installation.

One possible solution is to re-use the previous trick of copying the requirements.txt first, in isolation, to only install the dependencies. But that would mean we need to manage dependencies in both requirements.txt and setup.py. Is there an easier way?

Multi-Stage, Cache-Friendly Build

The command setup.py egg_info will create a foo.egg-info directory with various bits of information about the package, including a requirements.txt.

We’ll execute egg_info in an isolated image, copy the requirements.txt to a new image (in order to be independent from changes in setup.py other than the list of requirements), then install dependencies using the generated requirements.txt. Up to here these steps are fully cacheable unless the list of project dependencies changes. Afterwards we’ll proceed in the usual fashion by copying over the remaining source code and installing it.

(One snap: The generated requirements.txt also contains all possible extras listed in setup.py, under bracket separated sections such as [dev]. pip cannot handle that, so we’ll use grep to cut the generated requirements.txt at the first blank line.)

# Dockerfile
FROM python:slim as common-base

ENV DJANGO_SETTINGS_MODULE foo.settings

FROM common-base as base-builder

RUN pip install -U pip setuptools

RUN mkdir -p /app
WORKDIR /app

# Stage 1: Extract dependency information from setup.py alone
#  Allows docker caching until setup.py changes
FROM base-builder as dependencies

COPY setup.py .
RUN python setup.py egg_info

# Stage 2: Install dependencies based on the information extracted from the previous step
#  Caveat: Expects an empty line between base dependencies and extras, doesn't install extras
# Also installs gunicon in the same step
FROM base-builder as builder
RUN apt-get update && apt-get install -y build-essential python3-dev
RUN mkdir -p /install
COPY --from=dependencies /app/foo.egg-info/requires.txt /tmp/
RUN sh -c 'pip install --no-warn-script-location --prefix=/install $(grep -e ^$ -m 1 -B 9999 /tmp/requires.txt) gunicorn'

# Everything up to here should be fully cacheable unless dependencies change
# Now copy the application code

COPY . .

# Stage 3: Install application
RUN sh -c 'pip install --no-warn-script-location --prefix=/install .'

# Stage 4: Install application into a temporary container, in order to have both source and compiled files
#  Compile static assets
FROM builder as static-builder

RUN cp -r /install/* /usr/local

RUN sh -c 'python manage.py collectstatic --no-input'

# Stage 5: Install compiled static assets and support files into clean image
FROM common-base

RUN mkdir -p /app
COPY docker-entrypoint.sh /app/
COPY --from=builder /install /usr/local
COPY --from=static-builder /app/static.dist /app/static.dist

ENTRYPOINT ["/app/docker-entrypoint.sh"]

Addendum: Handling data files

When converting your project to be installable with setup.py, you should make sure that you’re not missing any files in the final build. Run setup.py egg_info and then check the generated foo.egg-info/SOURCES.txt for missing files.

A common trip-up is the distinction between Python packages and ordinary directories. By definition a Python package is a directory that contains an __init__.py file (can be empty). By default setup.py only installs Python packages. So make sure you’ve got __init__.py files also on all intermediate directory levels of your code (check in management/commands, for example).

If your project uses templates or other data files (not covered by collectstatic), you need to do two things to get setup.py to pick them up:

  • Set include_package_data=True in the call to setuptools.setup() in setup.py.
  • Add a MANIFEST.in file next to setup.py that contains instructions to include your data files.
    The most straightforward way for a template directory is something like recursive-include foo/templates *

The section on Including Data Files in the setuptools documentation covers this in more detail.

Write a Comment

Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.